Landfill Gas Regulation & Solid Waste Industry

Michel Lefebvre June 12, 2025

- Landfills contribute about 19 percent of the Canada's total methane emissions.
- This translates to about 2.5 percent of our total GHG emissions.
- Federal government is working to reduce landfill methane emissions through regulations.
- The proposed regulation requires landfills to control methane emissions and detect & repair "leaks".

The Politics

- 2015 Paris Agreement.
- In 2022 the Federal Government published Canada's 2030 emission reduction plan.
- Provided a roadmap to reach its climate commitments
 - Decrease GHG emissions by 40 percent below 2005 levels by 2030.
 - Achieve net zero emissions by 2050

So Why Us?

- Methane is a listed toxic substance under the Canadian Environmental Protection Act.
- It is a potent GHG.
- Methane has a relatively short lifespan in the atmosphere.
- Due to both potency and short lifespan, decreasing methane emissions can bring real and significant near-term climate benefits.

Source: David T. Allen

Federal Government approach to meeting obligations

• It's the carrot or the stick.

. L

SWAN

How Low Can You Go?

- Alberta Technology Innovation and Emissions Regulation (TIER):
- 100, 000 Tonnes eCO2
 - 21 GWP 4,762 T Methane
 - 25 GWP 4,000 T Methane
 - 28 GWP 3,570 T Methane
 - 31 GWP 3,225 T Methane
 - 84 GWP 1,190 T Methane

How to Get There (from Here)

- Active LFG Collection Systems
 - Well established technology.
 - Collection efficiencies greater than 50 percent possible.
 - Established Protocols.
- Passive Systems
 - Evapotranspiration Landfill Biocovers (ETLBC)
 - Bio-widows
 - Methane oxidation rates greater than 60 percent reported.
 - Season efficacy ?
 - No established protocol.
- Organics Diversion

Speedbumps Along the Way

- Active Gas Collection Prime Directive!!
- Landfill Design and Operations
- How to measure net emissions

LFG 101 – Prime Directive!!

• Never take more than the landfill has to give you!!

Design Factors

- Older landfills may not be engineered.
- Landfills seldom designed with active LFG collection in mind.
- Landfill operations can adversely impact the ability to capture gas
 - Geometry (shallow, narrow, etc)
 - Contaminated soils
 - Placement of C&D
 - Firebreaks
- Balancing Act OH&S and Environmental Regs

The (other) Inconvenient Truth

- Landfills vent / "leak"
- We need them to leak

Source: SWANA

Source: SWANA

How Do We Measure Emissions

- In the end, we want to reduce methane emissions.
- Question is how to reliability measure emissions from our landfills?

TETRA TECH

Emission Sources

Area Source

Point Source

Current Industry Standard - SEMs

• Measure methane concentration in PPM

- Precise
- Versatile any site, any terrain
- Multiple Senses
 - Smell, sight, hearing
- Cons
 - Labor intense
 - Time consuming
 - Weather dependent (snow, rain, etc.)

Rovers/Robots

- Uses point sensors, passive and active imaging
- Evolving market

Rovers/Robots – Pros and Cons

- Pros:
 - Safer for LF workers
 - Customizable platform build the rover you want
- Cons:
 - Unpredictable terrain on landfills
 - Landfill equipment present
 - Cost and accessibility
 - Weather (snow) limitations

Tracer Method

- Tracer gas Acetylene
- Mobile lab collecting plume data
- Goal is correlation

Trucks - Pros & Cons

- Pros:
 - Repeatable at all landfills
 - Accurate
 - Considered the gold standard
- Cons:
 - Weather dependent
 - Frequency of scans
 - Costly time consuming
 - Difficult to pin-point sources

Satellite Imagery

21

Satellites – Pros and Cons

y Line Rd

Pros:

Quick
Relatively Cheap
Low labor input
Frequency of scans

W County Line Rd

Clouds? Forget it
Static measurement – one point in time
Scans not available at night

Next Steps

- Wait and see what happens at the federal level
- Ongoing development of methane measurement technology
 - Don't count on the USEPA leading the charge.
 - Emissions measurements need to be accurate, robust, and economical (good, fast and cheap).
- Need for a biocover protocol.

Thank You

SPACE