

REDEFINING PACKAGING: ADVANCING MYCELIUM-BASED MATERIALS FOR A SUSTAINABLE FUTURE

Prepared by:

Chen Li, MSc, University of Manitoba **Ali Zoungrana**, **PhD**, *University of Manitoba* **Qiuyan Yuan**, **PhD**, *University of Manitoba*

University গ্রManitoba

June 12th, 2025

Background Information

The Problem with Conventional Packaging

- **Expanded Polystyrene (EPS)** → cheap, light, non-biodegradable
- **PFAS** coatings \rightarrow water and grease resistance, highly persistent
- Break down into **microplastics** \rightarrow accumulate in ecosystems
- Hard to recycle, slow to degrade, harmful when incinerated

High Energy consumption

Emissions: CO₂, CFCs

End up in water resources as microplastic

Endangering aquatic life

Environmental and Health Impacts - Why Alternatives Matter

- Packaging: Largest source of plastic waste globally around 40% in 2019 (OECD, 2022)
- Microplastics found in oceans, lakes, soil
- Lake Winnipeg: ~193,000 particles/km² (Warrack et al., 2017)
- **PFAS:** Detected in >97% of human blood samples (CDC, 2024)
- Brain tissue: Microplastics found in neural samples (Nature Medicine, 2025)
- Associate with: cancer, neurotoxicity, endocrine disruption
- No Biodegradable, prompting calls for safe, scalable, and circular alternatives
- Our research: mycelium-based packaging

Mycelium Bio-foam Problem-Solution Fit

Almost there

Benefits of the Solution

- Grown from fungi
- Binds to agricultural and upcycling (carboard) wastes \rightarrow molded into packaging
- Fully biodegradable, no toxic residues
- Fire-resistant, compostable, insulative properties
- Potential EPS replacement

What are the consumers perceptions of Bio-foams? What are the limiting factors to market adoption and how to overcome them?

Ο **Market Potential & Consumers perception** Ο

□ Current packaging foam market is over USD 17.3 billion • Consumers are aware of the environmental impacts of EPS foam and willing to adopt Bio-foams □ Bio-foam weight and price are considered limiting factors for adoption

Next step: Optimize the MBF packaging design through simulations to achieve lighter, more cost-effective, and environmentally friendly packaging solutions.

End Consumers Foam packaging-consuming Companies Packaging Waste Management Stakeholders

SHOCK ABSORPTION MODELING FOR SUSTAINABLE MBF PACKAGING

Using Ansys Explicit Dynamics to simulate the drop impact of a 32inch flat-screen TV and a porcelain vase secured with various MBF packaging configurations and density

50 mm foam coverage

> 100 mm foam coverage

150 mm foam coverage

***** Results of the Shock Absorption Performance of MBF

Impact of MBF Design and properties on Flat-screen TV Shock Absorption

Impact of MBF Design on Porcelain vase Shock Absorption

- \Box Increasing MBF density beyond 150 kg/m³ does not improve the shock absorption performance,
- □ MBF design, thickness and density impact the cushioning performance but also MBF weight, cost, and overall sustainability,
- \Box Tailored MBF design for each product, considering vulnerable spots, can optimize packaging performance while minimizing weight.

COMPARATIVE LCA OF MBF AND

EPS

Software: OpenLCA

- **Goal and scope**: Comparative environmental impacts assessment of MBF and EPS packaging to secure a 32-inch flat-screen TV
- **Function**: Secure a 32-inch flat-screen TV and prevent damage during shock events
- Functional Unit: The quantity of foam required to secure a 32-inch flat-screen TV: 63 g, 315 g and 472.5 g for EPS, MBF_100 and MBF 150, respectively.

Raw Material Acquisition and Manufacture Phase Ο

• **Consumption Phase**

End of Life Management Process

Comparison	EPS
Biodegradability	No biodegradable
Management	Landfilling, incineration, recycl
Landfilling Concern	bulky nature, occupying high s
Alignment Principle	Linear economy

MBF

Biodegradable

- ing Recycling, Composting, landfilling
- space Biodegradation emissions

Circular economy

Importance of Sustainable Packaging Design MBF material extraction and manufacture stages

Impact categories	Human non-carcinogenic toxicity (kg 1,4-DCB)	Marine ecotoxicity (kg 1,4-DCB)	Global warming (kg CO ₂ eq)	Terrestrial ecotoxicity (kg 1,4-DCB)	Fossil resource scarcity (kg oil eq)
MBF150	9.36	6.02	3.24	2.07	0.86
MBF100	6.23	4.01	2.16	1.38	0.57
Impact Reduction	33.4 %	33.4%	33.3%	33.3%	33.7%

MBF material consumption stage

Impact categories	Marine ecotoxicity (kg 1,4-DCB)	Human non-carcinogenic toxicity (kg 1,4-DCB)	Global warming (kg CO ₂ eq)	Fossil resource scarcity (kg oil eq)	Terrestrial ecotoxicity (kg 1,4-DCB)
MBF150	0.015	0.014	0.00282	0.00084	0.00054
MBF100	0.00995	0.00952	0.00189	0.00056	0.00036
Impact	33.7 %	32%	33%	33.3%	33.3%
Reduction					

Conclusion

• There is an enormous MBF market potential, but price, weight and proven environmental benefits are challenges to be addressed to facilitate adoption.

MBF Performance and Sustainability

- o Optimizing MBF properties such as density, thickness, and design configurations improves the cushioning performance while reducing price, weight and environmental impact
- Environmental Impact (EI)
- MBF has lower EIs during material acquisition, manufacturing, and end-of-life Ο management stages compared to EPS but its heavier weight increased transportation emissions.

Recommendations

MBF shock absorption performance is best when tailored for each product

THANK YOU

