

aecom.com

Evaluation of Destructive PFAS Technologies for Concentrated and Contaminated Treatment Residuals: A Technical Review of Existing Technologies

Presenter: Tim Abbott, PhD

Water/Wastewater Engineering

tim.abbott@aecom.com

Adapted & updated from a report prepared for Health Canada by :

Robbie Venis, PhD Tim Abbott, PhD Imad Touahar, P.Eng., M.Sc., M.Sc.A.

Report reviewed by :

Ahmed Elhadidy, PhD, P.Eng. Chris Curran, PE Timothy Phelan, P.Eng, PE

Delivering a better world

Agenda

Background

Treatment & Concentration Technologies

Report for Health Canada & Evaluation Criteria

Review of Destructive Technologies

Other Technologies

Summary & Conclusions

Delivering a better world

3

↔ aecom.com

What is **PFAS**?

- 1000's of compounds exist
- Characterized by C-F chain length & functional head group (e.g., SO₄, CO₂)
- C-F Bond extremely strong
- Persistent and bioaccumulative
- Often transform between PFAS species (e.g., poly→per, long→short)
- Individual monitoring & evaluation difficult
- Various negative health impacts
- Impacts at very low concentrations

PFAS IDENTIFY. RESOLVE.

PFAS Sources and Uses

Houseware and furnishings

https://api.time.com/wp-content/uploads/2023/05/Foreverchemicals-main-image.jpg

Chemicals and Pharmaceuticals Forming Foam

Aqueous Film

Defense

Oil & Gas

Transportation

Manufacturing

⇔

aecom.com

Figure 1. Uses of chemical PFAS notified under the NSNR since 1994. Percentage of total notified uses for notifications.

6%

- Water and oil repellent 12% Solvent Refrigerant/Blowing agent Processing aid Levelling agent Heat transfer fluid 22% Firefighting
 - Reactive intermediate
 - Other

Active ingredient in drugs

Health Canada Report

Concentration & Transfer Technologies

Delivering a better world

7

PFAS Separation Treatment Technology – Concentrate PFAS

Image Source: WEHRLE-WERKAG

A aecom.com

PFAS Separation Treatment Technology – Concentrate PFAS

Foam Fractionation Concentrated PFAS Waste Air or Ozone

Image Source: Environmental Science & Engineering Magazine

PFAS IDENTIFY. 9

ecom.com

PFAS Separation Treatment Technology – *Transfer* **PFAS**

Activated Carbon

PFAS Separation Treatment Technology – Transfer PFAS

Activated Carbon

Ion Exchange

PFAS IDENTIFY. 11

ecom.com

Treatment Approach – Add Destruction for PFAS-free Solution

Evaluation of Treatment Technologies

Delivering a better world

13

Destructive Technologies Review

How were technologies evaluated?

🔶 aecom.com

PFAS Destruction: Lines of evidence checklist*

 Decrease in target PFAS concentrations in context of mass balance

Transformation products identified and quantified

*Reference: SERDP ER18-16, Nov. 2021, Lines of Evidence and Best Practices to Assess the Effectiveness of PFAS Remediation Technologies

즑 aecom.com

Treatment Technologies

Delivering a better world 17

Destructive Treatment Technology – UV Light Based-Treatments

Image credit: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9778349/

- UV + catalyst/photosensitizer work together to break down PFAS sequentially
- Atmospheric pressure & room temperature
- More efficient at higher concentrations
- Media: Liquids & concentrates
- Effectiveness:
 - Data shows rapid destruction of PFOS, less for PFOA
 - Trials show 95% defluorination
 - Promising, ongoing evaluation

aecom.com

Destructive Treatment Technology – UV Based-Treatments

Image Credits: ClariosTech Enspired Solutions

PFAS IDENTIFY. 19

• Advantages:

- Potential real-time monitoring of progress
- Can run overnight/unstaffed
- Potential to recover catalysts

• Disadvantages:

- Energy intensive
- Competition from other organic matter & influenced by liquid characteristics (TDS, UVT, etc.)
- Limited removal of some PFAS forms & incomplete removal
- Difficult to recover catalyst

• TRL 6

aecom.com

Destructive Treatment Technology - Electrochemical Oxidation

Image credit: https://www.mdpi.com/1660-4601/19/24/16397

PFAS IDENTIFY

20

- Electrical current between anode and cathode creates oxidizing conditions
- Atmospheric pressure & room temperature
- Destroys PFAS via sequential, nonselective defluorination
- Electrode chemistry varies affects durability, costs
- Media: Liquids & concentrates
- Effectiveness:
 - Reductions of 99% or more
 - Promising, ongoing evaluation

芛 aecom.com

Destructive Treatment Technology - Electrochemical Oxidation

Image credit: Axine Water Technologies

- Advantages:
 - Relatively low energy requirements
 - Easy to operate
 - Relatively small footprint & scalable
 - Demonstrated efficacy at scale
- Disadvantages:
 - Most efficient at high PFAS concentrations
 - Competitive organics must be managed
 - Potential intermediate compounds & perchlorate generation
- TRL 8-9

PFAS IDENTIFY. 21

Destructive Treatment Technology - Water-Based Cold Plasma

Image credit: https://www.serdp-estcp.org/projects/details/790e2dda-1f7b-4ff5-b77e-08ed10a456b1/er20-5355-project-overview

- High voltage electrical discharge converts water into plasma
- Gas is bubbled bringing PFAS to the surface where it reacts
- No additional chemicals required
 - Media: Liquids & concentrates only
 - Effectiveness:
 - Varies:
 - Demonstrated reduction in long-chain and precursors >99%
 - Less effective against short chain PFAS

🔶 aecom.com

 May not completely mineralize all PFAS, ongoing research

Destructive Treatment Technology - Water-Based Cold Plasma

Image credit: https://www.serdp-estcp.org/projects/details/790e2dda-1f7b-4ff5-b77e-08ed10a456b1/er20-5355-project-overview

- Advantages:
 - Low amounts of scaling/fouling
 - Removals unimpacted by TOC levels
- Disadvantages:
 - Limited removal of short-chain PFAS (may require a surfactant)
 - May not completely mineralize all PFAS
 - High energy input esp. at high conductivities
- TRL 7-8

Destructive Treatment Technology – Supercritical Water Oxidation (SCWO)

- Supercritical high temperature (374°C) & pressure (221 bar/3200 psi) process
- Injects air or oxidant
- Produces inert gases, water, & minerals/salts
- Media: Liquids & solids (slurry)
- Effectiveness:
 - Highly effective
 - Demonstrated to reduce PFAS concentrations by >99.9%
 - Promising, ongoing evaluation

Destructive Treatment Technology – Supercritical Water Oxidation (SCWO)

Source: https://www.bluetechforum.com/wp-content/uploads/1.-374Water-BlueTech-Case-Study-Rev1.pdf

- Advantages:
 - Generates inert by-products
 - Potential for energy recovery
 - Good mass balance
- Disadvantages:
 - High pressure & temperature
 operation
 - Potential for scaling & corrosion
 - May require supplemental energy (depending on feedstock)

aecom.com

• TRL 9

Destructive Treatment Technology – Hydrothermal Alkaline Treatment (HALT)

Source: https://www.aquagga.com/ourtech

- High:
 - Temperature (350°C)
 - Pressure (165 bar/2400 psi)
 - pH (14)
- Requires 1-5 M caustic soda (NaOH)
- Produces inert gases, water, & minerals/salts
- Media: Liquids & solids (slurry)
- Effectiveness:
 - >99% of total PFAS
 - May remove other resistant contaminants

aecom.com

PFAS IDENTIFY. 26

Destructive Treatment Technology – Hydrothermal Alkaline Treatment (HALT)

Source: www.aquagga.com

- Advantages:
 - Works with high solids & salinity
 - Flexible conditions
 - Effective degradation of many PFAS forms
 - Good mass balance
- Disadvantages:
 - High temperature & pressure process
 - Scaling & corrosion
 - Chemical handling & cost
 - Output may require neutralization

aecom.com

• TRL 8

PFAS IDENTIFY. 27

Other Destructive Treatment Technologies & Summary

- Other Technologies for Solids Only
 - Incineration
 - 800 900°C
 - Full air
 - Pyrolysis
 - 200 600°C
 - No air
 - Gasification
 - 600 1,000 °C
 - Limited air
 - Thermal Plasma
 - 3,000 10,000 °C
 - No/limited air

Treatment Technology	Solids	Liquid	TRL
UV Based-Treatment	×	1	6
Electrochemical Oxidation	×	1	8-9
Water-Based Cold Plasma	×	~	7 – 8
HALT	1	1	8
SCWO	1	1	9

- Future/Emerging Technologies
 - Sonolysis
 - Electron beam (E-beam)
 - Bacteria, enzymes, and fungi
 - Others

Conclusions

- \checkmark No single technology can be universally applied to all types of PFAS waste streams.
- ✓ Technology selection should be site-specific and context dependent.

- ✓ Further advances in existing technologies and the development of novel innovations, is both required and expected.
- More research and development are needed to improve the performance, reliability, scalability, and affordability.

Questions?

Tim Abbott, PhD

Water/Wastewater Process Engineering

tim.abbott@aecom.com

Imad Touahar PFAS Lead, Canada

imad.touahar@aecom.com

PFAS IDENTIFY. 30

