Calgary

#### The City of Calgary Spyhill Waste Management Facility Phase 1 Final Closure – Evapotranspiration Cover

SWANA Northern Lights Chapter Annual Conference

John MacKenzie, P.Eng.



#### Bio



John MacKenzie, P.Eng. Project Engineer

I'm an environmental engineer and project manager with AECOM's Environment business line.

Over eleven years of experience with waste management and northern remediation projects.



### **Presentation Agenda**

- 01 Site Layout and History
- 02 Site Closure Objectives
- 03 Alberta Environment and Protected Areas Landfill Closure Requirements
- 04 Evapotranspiration Cover Design
- **05 Construction Overview**
- 06 Post-Construction Monitoring and Reporting
- 07 Acknowledgements



# **Site Layout and History**



#### **Original Site Layout (2016 Google Earth Image)**



- Phase 1 area is approximately 450 metres by 1,500 metres
- Existing infrastructure on site included SVE system, monitoring wells, compost facility, stockpile areas, stormwater ponds, and Operations' buildings and roads

aecom.com

#### **Site History**

- Mainly accepted household waste
- No liner or leachate collection system, expect for east area
- Incomplete records for depth and extents of waste placement
- Original cover soil highly variable



# Site Closure Objectives



#### **Site Closure Objectives**

- Meet regulatory commitments with Alberta Environment and Protected Areas
- Achieve a design with near zero percolation rates into the waste mass (minimize leachate production)
- Continued use of the Site area for ongoing and future operations activities
- Have an aesthetically pleasing cover congruent with contiguous land uses



# Alberta Environment and Protected Area Landfill Closure Requirements



#### **Standard Landfill Closures**

- Comprised of:
  - 60 cm thick compacted clay cover
  - 35 cm thick subsoil layer
  - 20 cm thick topsoil layer
- Landfill cover alternatives can include:
  - Geosynthetics such as high-density or low-density polyethylene liners
  - Other alternatives authorized by the Director





# **Evapotranspiration Cover Design**



#### What is Evapotranspiration?

- Process of water uptake by plant roots from soil
- Water is transpired from the plant leaves and from soil
- Natural, effective process to limit water infiltration
- ET Covers are established in the US for landfill closures, particularly in the dryer climates, but aren't used widely in Canada





#### Phase 1 Design and ET Cover Selection

#### Why Was an ET Cover Selected?

- Spyhill WMF location and weather data favourable for ET cover due to lower precipitation rates and semi-arid environment
- Subsurface investigations uncovered dry 'entombed' waste, which also demonstrated that the site was favourable for ET cover
- Existing soils on site were tested and modelling showed that ET cover would perform equivalent to a standard compacted clay cover
- Prediction (model) of water infiltration based on precipitation, soil texture, water storage in cover, and transpiration through vegetation and the cover soils

| Waste                   |
|-------------------------|
| (variable thickness)    |
| Grading Fill Layer      |
|                         |
|                         |
| ET Cover Soil (1800 mm) |
| Topsoil (200 mm)        |
| Vegetative cover        |



## **Construction Overview**



#### **Construction Stage**







#### **Construction Stage**







#### **Construction Stage**







#### **Project Challenges**

- Producing ET cover soils
  - Contractor had to screen soil used for ET and topsoil covers
  - More effort up-front work to process soils; less effort to place soils compared to compacted clay
- Establishing vegetation:
  - Extensive areas require monitoring and maintenance (ongoing)





# Post-Construction Monitoring and Reporting



\_\_\_\_

#### **How Do We Measure Success of Final Cover?**

- Site Inspections:
  - Vegetation inspections and reporting
  - Determine if seed mixture is establishing
  - Delineate areas with weed growth
- Maintenance and Warranty:
  - Contractor maintenance includes watering, herbicide application, and mowing
  - Reseeding areas where vegetation has not successfully established

- Monitoring:
  - Remote monitoring of ET cover
  - Monitoring profiles containing in situ water content, suction, and temperature sensors over the entire depth of the ET cover system



#### Instrumentation Install







#### **Phase 1 ET Cover Vegetated Areas**







#### What are Some Outcomes of the ET Cover Project?

- Future applications for other waste management facilities
- Future applications for other landfills in Alberta and Canada
- Progression of landfill design and closure

#### **Environmental Value**

- Reduced import of approximately 142,000 m<sup>3</sup> of soil
- Would have required approximately 11,900 additional truckloads to the site
- ET Cover areas are expected to be more resilient freeze/thaw cycles





#### 2016 Pre-construction



2023 Post-construction





### **Acknowledgements**

- The City of Calgary's Waste and Recycling Services
- O'Kane Consultants
- Whissell contracting (Phase 2 construction and ongoing vegetation maintenance)

