

PFAS in Landfill and Landfill Leachate

Introduction AECOM

- -PFAS Federal Initiative
- -Chemistry/Applications
- PFAS in Landfills
 - Groundwater
 - Leachate
- PFAS in WWTP
 - Leachate Treatment
 - Biosolids
- Take-aways

Federal Government Initiative

 https://canadagazette.gc.ca/rp-pr/p1/2021/2021-04-24/html/notice-aviseng.html

In 2021, the Government of Canada will

- continue to invest in research and monitoring on PFAS;
- collect and examine information on PFAS to inform a class-based approach;
 and
- review policy developments in other jurisdictions.

In addition, within the next two years, the Government of Canada will publish a State of PFAS Report, which will summarize relevant information on the class of PFAS.

PFAS Chemistry

- -Class of synthetic, manmade compounds
 - Carbons bonded with fluorine in place of hydrogen
 - C-F is one of the strongest chemical bonds
 - Many PFAS are resistant to thermal, chemical, and biological degradation
- Main manufacturing processes
 - Electrochemical Fluorination (ECF)
 - Telomerization
- Large group of compounds
 - Polymers
 - Non-Polymers

PFAS Chemistry

Well-studied PFAS have demonstrated the following characteristics:

- They are environmentally persistent and mobile within the environment. .
- They have been detected in humans, wildlife, and environmental media worldwide.
- They biomagnify in food webs.
- They are associated with a range of adverse effects on the environment and effects that may have implications for human health.

PFAS Applications

Aerospace

Apparel

Building and Construction

Chemicals and Pharmaceuticals

Electronics

Oil and Gas

Energy

Healthcare and Hospitals

Aqueous Film Forming Foam

Semiconductors

PFAS Family Tree – Minimum 24 PFAS Compounds

PFAS – One Water Perspective

PFAS in Landfills

Fig. 1. Environmental pathways of per- and polyfluoroalkyl substances (PFASs) originating from solid wastes.

Non-Degradable PFAS in Landfills

AECOM

Degradable PFAS in Landfills

PFAS Contamination in Minnesota

AECOM

- PFAS has been found in the groundwater and surface water of southeastern Minnesota
- sources of contamination include the Oakdale Disposal Site (ODS) and Washington County Landfill (WCL)
- used by 3M to dispose of "water-resistant material" for the manufacture of Scotchguard, Teflon, grease-proof paper, ...

in 2018, 3M paid \$850M to settle a lawsuit by the Minnesota Attorney General over natural resource damages

Sampling Request Area

PFAS Source Area

MI - IPP PFAS Initiative

- February 2018 95 WWTPs required to screen
 Industrial Users
 - Evaluate Industrial Users with potential sources of PFAS
 - Follow-up sampling of probable sources if found
 - Sample WWTP effluent if Sources > screening criteria (12 ppt PFOS)
 - Sample WWTP Biosolids if WWTP effluent ≥ 50 ppt PFOS
 - Reports submitted 2018-2019

PFAS in Landfills - MI

Table 13. IU and SIU PFAS Summary Results¹

Table 13. To allo Sto PFAS Sulli	nary K	esuits								
Industry/Category/Type		Graph ID	Total Facilities Sampled	PFOA Number and (%) of Detections	PFOA Minimum (Min) (ng/L)	PFOA Maximum (Max) (ng/L)	PFOS Number and (%) of Detections	PFOS Number and (%) of Sources (>WQS)	PFOS Minimum (Min) (ng/L)	PFOS Maximum (Max) (ng/L)
Landfills										
Hazardous Waste Landfill	SIU	LNDF-HAZ:S	1	1 (100%)	1.6	40	1 (100%)	1 (100%)	7.0	60
Type II Sanitary – Active	SIU	LNDF-T2-ACT:S	22	22 (100%)	2.3	43,425	22 (100%)	22 (100%)	8.5	5,000
	IU	LNDF-T2-ACT:I	3	3 (100%)	330	1,500	3 (100%)	3 (100%)	50	240
Type II Sanitary – Closed	SIU	LNDF-T2-CLS:S	13	13 (100%)	5.0	2,660	12 (92%)	11 (85%)	6.4	641
	IU	LNDF-T2-CLS:I	10	10 (100%)	4.3	2,000	10 (100%)	9 (90%)	9.3	460
Type III Sanitary - Active	SIU	LNDF-T3-ACT:S	3	2 (67%)	26	58	3 (100%)	1 (33%)	3.79	100
Type III Sanitary – Closed	SIU	LNDF-T3-CLS:S	3	3 (100%)	4.3	53	3 (100%)	2 (67%)	6.0	4,000
	IU	LNDF-T3-CLS:I	1	1 (100%)	200	410	1 (100%)	1 (100%)	13	61
Miscellaneous Sources										
SIU		MISC:S	73	27 (37%)	1.3	120	19 (26%)	1 (1%)	0.98	85
IU		MISC:I	50	15 (30%)	1.8	710	16 (32%)	0 (0%)	2	10

¹Units are in nanograms per liter (ng/L) or parts per trillion (ppt)

PFAS Removal Across Tertiary and Advanced Treatment

Туре	Process	PFAS Removal Efficacy			
	Granular media	Low			
Physical – filtration	MF/UF	Low			
	Reverse Osmosis (RO)	High			
Physical – adsorption	Granular Activated Carbon (GAC)	High			
	Chlorine	Low			
Chemical	Chloramine	Low			
	Ozone & ozone-peroxide	Low			
Irradiation	UV disinfection	Low			
IIIauialion	UV-AOP	Low			
Hybrid	Biologically Active Carbon (BAC)	Moderate			
Hybrid	Soil-Aquifer Treatment (SAT)	TBD - Site-Specific			
lon exchange	Ion Exchange (IX)	High			

Biosolids Treatment Considerations for PFAS

AECOM

- Heat drying and composting increased perfluoroalkyl acid (PFAA) concentrations
- Only dilution from blending with non-PFAS material decreased PFAA concentrations

Figure 1. PFAA loads (μg/kg, dry wt.) for the <2 mm particle size fraction of the samples. Pre: before post-treatment process (the Class A or B biosolids) and post: after post-treatment process. PFAAs <C6 include PFBA and PFBS, and PFAAs >C8 include PFNA, PFDA, PFUdA, PFDOA, PFTrDA, and PFTeDA.

Per- and polyfluoroalkyl substances in commercially available biosolid-based products: The effect of treatment processes

Rooney Kim Lazcano, 1,2,* Chloé de Perre, 1 Michael L. Mashtare, 1,2,3 Linda S. Lee 1,2,3 1

Treatment Challenge: Biosolids

- Wastewater treatment concentrates some PFAS compounds in sludge
- Traditional solids stabilization processes do not reduce PFAS
- Landfilling of biosolids
 - Not sustainable
 - Leachate concerns
- Incineration destruction or transfer from solids phase to gas phase?
- Result PFAS compounds still reside in the environment (landfill / emissions / leachate)

- Federal Government is studying PFAS, which may lead to regulation as a contaminant of concern
- PFAS detected at landfills
- Potential for landfill managers to include PFAS monitoring in budgets
- Potential for landfill managers to include leachate management and treatment evaluation as due diligence or upon release of Federal Government PFAS report

QUESTIONS

Steve Johnson, M.Eng, P.Eng. Manager, Waste Services AECOM Canada steve.johnson2@aecom.com