

Evapotranspiration Landfill Biocovers

Why ET-LBC Biocovers?

- Alternative landfill closure system
- Addresses both infiltration and GHG emissions
- Active LFG systems can be costly to build and maintain, and may not be appropriate for some landfill sites.

CO₂e Reduction Opportunity

- CH₄ has 25 times Global Warming Potential of CO₂
- ~25% of Canadian anthropogenic CH₄ emissions comes from landfills

Evapotranspiration

Evapotranspiration Cover Systems

- Store moisture in soil evaporation and transpiration
- Effective at limiting infiltration and leachate generation

Methane Oxidation

- Naturally occurring, aerobic organisms
- Methanotrophs convert CH₄ to CO₂

WE LOVE METHANE!

What is an Evapotranspiration Landfill Biocover

Evapo- Transporation

Evapotranspiration Landfill Biocover

Methane Oxidation

Methane Emission Mitigation

Active System

Passive ET-LBC

- ET-LBC technology can be an alternative or complementary to active LFG collection.
- Applicable to small landfill site where active collection either impractical or not feasible

Methane Emission Mitigation

How do We Apply this to Landfill Covers?

Topsoil

Subsoil

Barrier Clay

Solid Waste

Clay Barrier Cover

ET-LBC

WW

Gas Distribution
Layer

WW

Solid Waste

ET Cover/Biocover

Methane Oxidation Zone

Gas Distribution Layer

Methane Oxidation

Where is it Applicable?

- Where potential evapotranspiration > precipitation
- Evapotranspiration = evaporation + transpiration

PET rates in North America

U of C Material Study

- Focus on materials that were:
 - Locally available
 - Low cost
 - Fulfill ET functions
 - Yield high methane oxidation

Methane Oxidation Column

Material Properties

- Main physical considerations:
 - Organic content
 - pH
 - C/N ratio
 - Field capacity

Results

- The most promising materials proved to be topsoil and soil amendments (compost)
- The chosen amendment was compost screenings

Compost Screenings

Topsoil

Hat-Trick!

- **1.** Organics diversion
- 2. Use for previously landfilled byproduct
- 3. Reduces emissions

1. Organics Diversion

- Composting programs
- Reduce LFG emissions
- Reduce settlement, increase airspace opportunity

2. Previously Landfilled Byproduct

- Screenings from compost are usually landfilled
- Opportunity to use as soil amendment
- Nutrient supplement for methanotrophs

3. Reduced GHG Emissions

- Methanotrophic oxidation of methane
- Reduced GHG fugitive emissions
- Possible GHG credits?

Leduc Landfill ET-LBC Project

- Phase II of the landfill surface area: 10.6 ha
- Estimated Waste Volume: 1.0M m³

Test Plot Demonstration

- Two test plots installed in closed area of landfill
- Measured performance of methane oxidation, vegetation growth, soil moisture, and temperature
- Sensors installed to measure soil moisture and temperature

Test Plot Construction

Material Placement

Material Mixing

Test Plot Observations - Moisture

July 1, 2017 - February 1, 2018

Test Plot Observations – Temperature

July 1, 2017 - February 1, 2018

CO₂e Reduction Opportunity

• In situ observations of methane oxidation of 71-97%

Test Plot Observations - Issues

Conclusions

- ET-LBC are low tech, and cost effective
- Can be applied at small landfill sites
- Performance meets requirements for clay covers (in certain environments)
- Low operations and maintenance costs
- Biological oxidation of methane reduce GHG emissions
- Constructed using composting byproducts
- Potential for offset emissions credits

To Be Continued!!

Thank you to our project partners.