

Aeration in Composting Environments

Daryl McCartney, Ph.D., P.Eng. Professor, University of Alberta

SWANA Northern Lights Conference Edmonton, 11 May 2018

Aeration in Composting

Background (Chiumenti et al. 2005)

- Aeration used to:
 - supply oxygen.
 - remove moisture (drying).
 - cooling (ventilation).
- Passive systems:
 - thermal convection.
 - aeration rate function of:
 - √ temperature differences &
 - ✓ air flow resistance in pile.
- Forced systems:
 - Pressure loss related to air flow resistance in pile.
 - Increased pressure loss equals:
 - ✓ Increased blower size.
 - ✓ Increased costs.

WINIVERSITY OF ALBERTA

Aeration in Composting Today's Focus

Participants should understand:

- 1) Poor O₂ supply a root cause of odour.
- 2) Relative aeration requirements:
 - ✓ Metabolic oxygen (breathing).
 - ✓ Cooling (ventilation).

Aeration in Composting

Today's Focus

Participants should understand:

1) Poor O₂ supply a root cause of odour.

2) Aeration requirements:

- ✓ Metabolic oxygen (breathing).
- ✓ Cooling (ventilation).

Aeration Requirements

Steps to Calculate Quantity of Air Required

(Haug 1993

- Metabolic metabolism (breathing):
 - 1) Estimate feedstock chemical composition $(C_{xx}H_{yy}O_{zz})$.
 - 2) Prepare stoichiometric equations:

$$C_{xx}H_{yy}O_{zz} + ??O_2 \longrightarrow xx CO_2 + ??H_2O$$

- 3) Calculate oxygen demand.
- Calculate air required based on biodegradability.
- Convert to dry weight basis.

- 1) Calculate heat generation (kcal per total solids).
- 2) Calculate heat required to heat inlet gases to 55°C.
- 3) Calculate dry air required to keep T at 55°C.

Aeration Requirements Metabolic versus Venting Summary

- Metabolic needs:
 - 1.94 kg air per kg TS (FW + YW)
 - 1.62 m³ air per kg TS

Note:

Air mass ~ 2x mass TS

- Venting needs:
 - 39.3 kg air per kg TS
 - 32.8 m³ air per kg TS
 - Excess air ratio (EAR; kg:kg) = 20.2
- Based on venting needs over 25 days:
 - Average:
 - 55 m³ per h per dry tonne TS
 - 41.4 m³ per h per m³
 - Peaking: 2 to 7 times average, so 110 to 385 m³ h⁻¹ dry t⁻¹

Composting Aeration Requirements Summary & Conclusions

- Engineering design & operations best practices:
 - Careful with high risk feedstocks.
 - Minimize compaction.
 - Ensure uniform air distribution.
 - Pore space oxygen conc. >15%.
- Aeration requirements:
 - Air largest mass balance requirement.
 - Venting needs ~20x metabolic needs.
 - Peak needs 2 to 7x average needs.

