Approaches to selecting food waste processing technologies

Daryl McCartney, Ph. D., P.Eng.
Edmonton Waste Management Centre of Excellence
University of Alberta

SWRC/SWANA
Waste Re Forum, Saskatoon
19 May 2017

Background
City of Edmonton

• Population: 932,500 (2016).
• Material streams available:
 • Residential:
 • curbside & multi-family.
 • ICI sectors.
• Technology available:
 • Composting:
 • Windrow (Leaf & YW).
 • Covered aerated static pile (biosolids & woodchips).
 • In-vessel basin (OFMSW).
 • Anaerobic digestion (dry).
 • Gasification to biofuels.
• Match streams to best technology.
Background

Where Should Food Waste Go?
General Framework to Approach Technology Selection

1. Waste Stream Material Properties:
 - Physical
 - Chemical
 - Biological:
 - Biodegradability
 - Contaminants.

2. High Level Technology Choices:
 - Landfill
 - MBT
 - Composting
 - Anaerobic digestion
 - Thermal conversion

3. Environmental Quality Objectives or Product Specifications:
 - Physical
 - Chemical
 - Biological
 - Visual

Food Waste Technology Selection
Physical Contamination & BMP

<table>
<thead>
<tr>
<th>Technology</th>
<th>Key Feedstock Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioreactor Landfill</td>
<td>MC; BMP</td>
</tr>
<tr>
<td>MBT to Landfill</td>
<td>MC; C:N; BMP</td>
</tr>
<tr>
<td>Composting</td>
<td>Physical contamination; MC; C:N</td>
</tr>
<tr>
<td>Anaerobic Digestion</td>
<td>Physical contamination; BMP; C:N:S; MC</td>
</tr>
<tr>
<td>Thermal Conversion</td>
<td>Physical contamination; MC; energy yield</td>
</tr>
</tbody>
</table>
Objectives For Today

- Understand impacts of material source on:
 - Contaminants &
 - Biodegradability (BMP).

Source of Food Waste Material

Impact of Collection Method on Feedstock
(Cecchi et al. 2003)

- Three general methods to separate organics from MSW:
 1. Separate collection (SC):
 - e.g. pure waste streams from ICI sector.
 2. Source separation (SS):
 - e.g. household separation of residential waste also known as BioWaste.
 3. Mechanical separation (MS) at central facility:
 - co-mingled collection and then treatment, e.g. MBT in Europe and Edmonton Compost Facility.
Source of Food Waste Material

Percent Contamination by Source Type

<table>
<thead>
<tr>
<th>Separate Collection (as received)</th>
<th>Source Separation (as received)</th>
<th>Mechanical Separation (~3” screen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICI 0.3a to 2.2a</td>
<td>R 1.8b to 20.0c</td>
<td>MBT 22.8d to 36.8e</td>
</tr>
<tr>
<td>3.0f to 14.0g</td>
<td>Edm 6.8f to 16.4f</td>
<td></td>
</tr>
</tbody>
</table>

a Cecchi et al. 1997
b Seattle 2012
c Levis et al. 2010
d Montejo et al. 2010
e Montejo et al. 2015

Source of Food Waste material

Monthly Variable of Residential (Seattle 2012)

<table>
<thead>
<tr>
<th>Material</th>
<th>Curbside (%)</th>
<th>Multi-family (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yard waste</td>
<td>66.2 (27.4 - 88.0)</td>
<td>35.4 (34.8 - 53.0)</td>
</tr>
<tr>
<td>Food waste</td>
<td>26.2 (8.9 - 57.1)</td>
<td>43.4 (34.4 - 51.8)</td>
</tr>
<tr>
<td>Compostable paper</td>
<td>5.0 (1.9 - 11.5)</td>
<td>7.8 (6.9 - 10.3)</td>
</tr>
<tr>
<td>Contaminants</td>
<td>1.8 (0.5 - 4.3)</td>
<td>4.0 (3.0 - 5.9)</td>
</tr>
</tbody>
</table>
ICI Sector: Pre- versus Post-Consumer
(Yan & McCartney 2014, 2017)

<table>
<thead>
<tr>
<th>Sample Level</th>
<th>Source</th>
<th>Contamination % (min to max)</th>
<th>Recovery, % (min to max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Buildings</td>
<td>Pre-consumer</td>
<td>3 (0 to 7)</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Post-consumer</td>
<td>14 (2 to 19)</td>
<td>NA</td>
</tr>
<tr>
<td>Between Buildings</td>
<td>Buildings with Significant Food Services</td>
<td>5 (0 to 10)</td>
<td>25 (0 to 69)</td>
</tr>
</tbody>
</table>

Background

Objectives For Today

- Understand impacts of material source on:
 - Contaminants &
 - Biodegradability (BMP).
Food Waste Risk & Reward

Reward - Substrate Biodegradability

- Most important design & operation factor for:
 - Composting.
 - Anaerobic digestion.

- Used to determine:
 - oxygen demand;
 - air demand to remove heat;
 - biomethane potential; and
 - final product mass.

Food Waste Reward - Biodegradability

Relative to Other Organic Waste Feedstock

- Biodegradability function of macromolecules.
- Relative biodegradability:
 - carbohydrates/sugar > protein > lipids/fats > > cellulose/hemicellulose >> lignin

- Food waste highly degradable plant and animal material:
 - Manures once digested.
 - Biosolids twice digested.
 - Leaf & yardwaste less biodegradable.
Food Waste - Biodegradability

Methane Yield Based on Source of OFMSW

(Cecchi et al. 2003)

<table>
<thead>
<tr>
<th>Source</th>
<th>Methane Yield (m³ CH₄ per tonne VS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separate Collection</td>
<td>Source Separated</td>
</tr>
<tr>
<td>450 to 490</td>
<td>370 to 400</td>
</tr>
</tbody>
</table>

Lower methane potential from MS material.

Food Waste - Biodegradability

Methane Yield Based on Source of OFMSW

(Lopez et al. 2016)

<table>
<thead>
<tr>
<th></th>
<th>Residential</th>
<th>ICI Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature Review</td>
<td>m³ CH₄ per tonne VS</td>
<td>n = 7</td>
</tr>
<tr>
<td>Lopez Data</td>
<td>m³ CH₄ per tonne VS</td>
<td>NA</td>
</tr>
</tbody>
</table>
Food Waste Composting Risk
Risk - Food Waste Can Also Be Very Wet
Prince George’s County, Maryland Composting Facility

Summary & Conclusions

- Understand impacts of material source on food waste contamination & BMP.
- Feedstock source significant impact on contamination & BMP:
 1. Separate Collection – ICI
 2. Source Separated
 3. Mechanical Separation
Questions?
Daryl.McCartney@ualberta.ca