Integration of Anaerobic Digestion into Organics Processing: Co-composting of Digestate

Golnaz Arab & Daryl McCartney
EIWME & University of Alberta

SWANAL Conference, Calgary
13 May 2016

Background

City of Edmonton

- Capital of Alberta.
- Population: 880,000.
- GDP = $80,000 per year.
- Residential waste diversion goal of 90% by 2017.

Current situation

- Capacity issues.
- Wish to treat more biosolids.
- Growth to ICI sector.
- Installing AD capacity.

Anaerobic digester

40,000 t y⁻¹

SSO from ICI

OFMSW

Manure

Digestate

Biogas

Final products

Inputs

Digestate Co-composting Hypothesis

- Co-composting of digestate with fresh organics will reduce MRT of composting.
- Controlled variable:
 - Digestate portion ranged from 0 to 100%.

Background

Digestate Co-composting

- Why Co-compost?
 - Common MO in composting & AD processes.
 - Extracellular enzymes in digestate.
 - Nutrient addition, e.g. N, P, Mg, Fe.
 - Physical amendment: BD & MC.
- May result in:
 - Shorter lag phase.
 - Shorter retention times or more stable product.
 - Decrease in energy needs.
 - Lower costs??

Key Objective for Today

Highlight potential of digestate co-composting.
Digestate preparation
• 500 L HSAD pilot-scale facility.
• With the same feedstock materials used in the full scale:
 a. Pretreated OFMSW (-2’), 48%
 b. ICI SSO, 51%
 c. Horse manure, 1%
 d. Woodchips, as needed.

Composter feedstock
• 2 to 5” material in spring 2015.
• Mostly yard waste, grass, & thatch.

Material & Methods
Digestate Preparation

<table>
<thead>
<tr>
<th>Composter ID</th>
<th>Main feedstocks</th>
<th>Amendments</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0 (% of wet wt.)</td>
<td>100 (kg)</td>
</tr>
<tr>
<td>C2</td>
<td>10</td>
<td>90 (kg)</td>
</tr>
<tr>
<td>C3</td>
<td>20</td>
<td>80 (kg)</td>
</tr>
<tr>
<td>C4</td>
<td>30</td>
<td>70 (kg)</td>
</tr>
<tr>
<td>C5</td>
<td>40</td>
<td>60 (kg)</td>
</tr>
<tr>
<td>C6</td>
<td>50</td>
<td>50 (kg)</td>
</tr>
<tr>
<td>C7</td>
<td>75</td>
<td>25 (kg)</td>
</tr>
<tr>
<td>C8</td>
<td>100</td>
<td>0 (kg)</td>
</tr>
</tbody>
</table>

1 Wet weight. 2 Woodchips.
Results

Stability - Specific Oxygen Uptake Rate

Time (days)

Stability end point

Results

RHG, OC Removal, & Stability

Digestate Co-composting

Summary & conclusion

Integration of composting and AD processes

Effects of co-composting of digestate (inoculation amount)

Digestate prepared in AD, mixed with fresh OFMSW, added to composters

Best performance with about 20-40% digestate (wet weight)

What is the practical significance of these findings . . . ?

Acknowledgments

Material & Methods

Experimental Setup
Materials & Methods

Experimental Set-up

- **Dryer unit**
- **Cooler**
- **Flow meter**
- **Gas sensor**

Materials & Methods (Analytical Method)

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Units</th>
<th>Standard Code</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD</td>
<td>Kg m⁻³</td>
<td>NA</td>
<td>TMECC 03.01A</td>
</tr>
<tr>
<td>TS</td>
<td>%, w/w</td>
<td>NA</td>
<td>TMECC 03.09</td>
</tr>
<tr>
<td>CM</td>
<td>%, dw</td>
<td>NA</td>
<td>TMECC 03.07</td>
</tr>
<tr>
<td>SF</td>
<td>-</td>
<td>NA</td>
<td>TMECC 04.11</td>
</tr>
<tr>
<td>EC</td>
<td>μs cm⁻¹</td>
<td>NA</td>
<td>TMECC 04.10</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>O₂ concentration</td>
<td>%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>pH</td>
<td>-</td>
<td>NA</td>
<td>TMECC 04.10</td>
</tr>
<tr>
<td>EC</td>
<td>-</td>
<td>NA</td>
<td>TMECC 04.10</td>
</tr>
<tr>
<td>Carbon</td>
<td>-</td>
<td>NA</td>
<td>TMECC 04.10</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>-</td>
<td>NA</td>
<td>TMECC 04.10</td>
</tr>
<tr>
<td>H₂O</td>
<td>-</td>
<td>NA</td>
<td>TMECC 04.10</td>
</tr>
<tr>
<td>Microbial population</td>
<td>%</td>
<td>NA</td>
<td>Pyrosequencing</td>
</tr>
<tr>
<td>C/N</td>
<td>-</td>
<td>NA</td>
<td>TMECC 04.10</td>
</tr>
<tr>
<td>SOUR</td>
<td>mg O₂ g⁻¹ OM d⁻¹</td>
<td>3-10</td>
<td>TMECC 05.08-A</td>
</tr>
<tr>
<td>Solvita® CO₂</td>
<td>Solvita color code for CO₂</td>
<td>4-6</td>
<td>TMECC 05.08-E</td>
</tr>
<tr>
<td>Solvita® NH₄</td>
<td>Solvita color code for NH₄</td>
<td>4</td>
<td>TMECC 05.08-E</td>
</tr>
<tr>
<td>NH₃</td>
<td>mg NH₃ kg⁻¹ d⁻¹</td>
<td>75-500</td>
<td>NRAL-105</td>
</tr>
<tr>
<td>N/P</td>
<td>-</td>
<td>3.5-3</td>
<td>NRAL-105</td>
</tr>
</tbody>
</table>